dgl.sparse.SparseMatrix.smeanο
- SparseMatrix.smean(dim: int | None = None)ο
Computes the mean of non-zero values of the
inputsparse matrix along the given dimensiondim.The reduction does not count zero values. If the row or column to be reduced does not have any non-zero value, the result will be 0.
- Parameters:
input (SparseMatrix) β The input sparse matrix
dim (int, optional) β
The dimension to reduce, must be either 0 (by rows) or 1 (by columns) or None (on both rows and columns simultaneously)
If
dimis None, it reduces both the rows and the columns in the sparse matrix, producing a tensor of shapeinput.val.shape[1:]. Otherwise, it reduces on the row (dim=0) or column (dim=1) dimension, producing a tensor of shape(input.shape[1],) + input.val.shape[1:]or(input.shape[0],) + input.val.shape[1:].
- Returns:
Reduced tensor
- Return type:
torch.Tensor
Examples
Case1: scalar-valued sparse matrix
>>> indices = torch.tensor([[0, 1, 1], [0, 0, 2]]) >>> val = torch.tensor([1., 1., 2.]) >>> A = dglsp.spmatrix(indices, val, shape=(4, 3)) >>> dglsp.smean(A) tensor(1.3333) >>> dglsp.smean(A, 0) tensor([1., 0., 2.]) >>> dglsp.smean(A, 1) tensor([1.0000, 1.5000, 0.0000, 0.0000])
Case2: vector-valued sparse matrix
>>> indices = torch.tensor([[0, 1, 1], [0, 0, 2]]) >>> val = torch.tensor([[1., 2.], [2., 1.], [2., 2.]]) >>> A = dglsp.spmatrix(indices, val, shape=(4, 3)) >>> dglsp.smean(A) tensor([1.6667, 1.6667]) >>> dglsp.smean(A, 0) tensor([[1.5000, 1.5000], [0.0000, 0.0000], [2.0000, 2.0000]]) >>> dglsp.smean(A, 1) tensor([[1.0000, 2.0000], [2.0000, 1.5000], [0.0000, 0.0000], [0.0000, 0.0000]])