FlickrDatasetο
- class dgl.data.FlickrDataset(raw_dir=None, force_reload=False, verbose=False, transform=None, reorder=False)[source]ο
 Bases:
DGLBuiltinDatasetFlickr dataset for node classification from GraphSAINT: Graph Sampling Based Inductive Learning Method
The task of this dataset is categorizing types of images based on the descriptions and common properties of online images.
Flickr dataset statistics:
Nodes: 89,250
Edges: 899,756
Number of classes: 7
Node feature size: 500
- Parameters:
 raw_dir (str) β Raw file directory to download/contains the input data directory. Default: ~/.dgl/
force_reload (bool) β Whether to reload the dataset. Default: False
verbose (bool) β Whether to print out progress information. Default: False
transform (callable, optional) β A transform that takes in a
DGLGraphobject and returns a transformed version. TheDGLGraphobject will be transformed before every access.reorder (bool) β Whether to reorder the graph using
reorder_graph(). Default: False.
Examples
>>> from dgl.data import FlickrDataset >>> dataset = FlickrDataset() >>> dataset.num_classes 7 >>> g = dataset[0] >>> # get node feature >>> feat = g.ndata['feat'] >>> # get node labels >>> labels = g.ndata['label'] >>> # get data split >>> train_mask = g.ndata['train_mask'] >>> val_mask = g.ndata['val_mask'] >>> test_mask = g.ndata['test_mask']
- __getitem__(idx)[source]ο
 Get graph object
- Parameters:
 idx (int) β Item index, FlickrDataset has only one graph object
- Returns:
 The graph contains:
ndata['label']: node labelndata['feat']: node featurendata['train_mask']: mask for training node setndata['val_mask']: mask for validation node setndata['test_mask']: mask for test node set
- Return type: