CIFAR10SuperPixelDataset๏
- class dgl.data.CIFAR10SuperPixelDataset(raw_dir=None, split='train', use_feature=False, force_reload=False, verbose=False, transform=None)[source]๏
Bases:
SuperPixelDataset
CIFAR10 superpixel dataset for the graph classification task.
DGL dataset of CIFAR10 in the benchmark-gnn which contains graphs converted fromt the original CIFAR10 images.
Reference http://arxiv.org/abs/2003.00982
Statistics:
Train examples: 50,000
Test examples: 10,000
Size of dataset images: 32
- Parameters:
raw_dir (str) โ Directory to store all the downloaded raw datasets. Default: โ~/.dgl/โ.
split (str) โ Should be chosen from [โtrainโ, โtestโ] Default: โtrainโ.
use_feature (bool) โ
True: Adj matrix defined from super-pixel locations + features
False: Adj matrix defined from super-pixel locations (only)
Default: False.
force_reload (bool) โ Whether to reload the dataset. Default: False.
verbose (bool) โ Whether to print out progress information. Default: False.
transform (callable, optional) โ A transform that takes in a
DGLGraph
object and returns a transformed version. TheDGLGraph
object will be transformed before every access.
Examples
>>> from dgl.data import CIFAR10SuperPixelDataset
>>> # CIFAR10 dataset >>> train_dataset = CIFAR10SuperPixelDataset(split="train") >>> len(train_dataset) 50000 >>> graph, label = train_dataset[0] >>> graph Graph(num_nodes=123, num_edges=984, ndata_schemes={'feat': Scheme(shape=(5,), dtype=torch.float32)} edata_schemes={'feat': Scheme(shape=(1,), dtype=torch.float32)}),
>>> # support tensor to be index when transform is None >>> # see details in __getitem__ function >>> import torch >>> idx = torch.tensor([0, 1, 2]) >>> train_dataset_subset = train_dataset[idx] >>> train_dataset_subset[0] Graph(num_nodes=123, num_edges=984, ndata_schemes={'feat': Scheme(shape=(5,), dtype=torch.float32)} edata_schemes={'feat': Scheme(shape=(1,), dtype=torch.float32)}),
- __getitem__(idx)๏
Get the idx-th sample.
- Parameters:
idx (int or tensor) โ The sample index. 1-D tensor as idx is allowed when transform is None.
- Returns:
(
dgl.DGLGraph
, Tensor) โ Graph with node feature stored infeat
field and its label.or
dgl.data.utils.Subset
โ Subset of the dataset at specified indices
- __len__()๏
The number of examples in the dataset.