.. _sphx_glr_tutorials_models_1_gnn: .. _tutorials1-index: Graph neural networks and its variants -------------------------------------------- * **Graph convolutional network (GCN)** `[research paper] <https://arxiv.org/abs/1609.02907>`__ `[tutorial] <1_gnn/1_gcn.html>`__ `[Pytorch code] <https://github.com/dmlc/dgl/blob/master/examples/pytorch/gcn>`__ `[MXNet code] <https://github.com/dmlc/dgl/tree/master/examples/mxnet/gcn>`__: * **Graph attention network (GAT)** `[research paper] <https://arxiv.org/abs/1710.10903>`__ `[tutorial] <1_gnn/9_gat.html>`__ `[Pytorch code] <https://github.com/dmlc/dgl/blob/master/examples/pytorch/gat>`__ `[MXNet code] <https://github.com/dmlc/dgl/tree/master/examples/mxnet/gat>`__: GAT extends the GCN functionality by deploying multi-head attention among neighborhood of a node. This greatly enhances the capacity and expressiveness of the model. * **Relational-GCN** `[research paper] <https://arxiv.org/abs/1703.06103>`__ `[tutorial] <1_gnn/4_rgcn.html>`__ `[Pytorch code] <https://github.com/dmlc/dgl/tree/master/examples/pytorch/rgcn>`__ `[MXNet code] <https://github.com/dmlc/dgl/tree/master/examples/mxnet/rgcn>`__: Relational-GCN allows multiple edges among two entities of a graph. Edges with distinct relationships are encoded differently. * **Line graph neural network (LGNN)** `[research paper] <https://openreview.net/pdf?id=H1g0Z3A9Fm>`__ `[tutorial] <1_gnn/6_line_graph.html>`__ `[Pytorch code] <https://github.com/dmlc/dgl/tree/master/examples/pytorch/line_graph>`__: This network focuses on community detection by inspecting graph structures. It uses representations of both the original graph and its line-graph companion. In addition to demonstrating how an algorithm can harness multiple graphs, this implementation shows how you can judiciously mix simple tensor operations and sparse-matrix tensor operations, along with message-passing with DGL. .. raw:: html <div class="sphx-glr-thumbnails"> .. thumbnail-parent-div-open .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Author: Qi Huang, Minjie Wang , Yu Gai, Quan Gan, Zheng Zhang"> .. only:: html .. image:: /tutorials/models/1_gnn/images/thumb/sphx_glr_1_gcn_thumb.png :alt: :ref:`sphx_glr_tutorials_models_1_gnn_1_gcn.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Graph Convolutional Network</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Author: Lingfan Yu, Mufei Li, Zheng Zhang"> .. only:: html .. image:: /tutorials/models/1_gnn/images/thumb/sphx_glr_4_rgcn_thumb.png :alt: :ref:`sphx_glr_tutorials_models_1_gnn_4_rgcn.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Relational Graph Convolutional Network</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Author: Qi Huang, Yu Gai, Minjie Wang, Zheng Zhang"> .. only:: html .. image:: /tutorials/models/1_gnn/images/thumb/sphx_glr_6_line_graph_thumb.png :alt: :ref:`sphx_glr_tutorials_models_1_gnn_6_line_graph.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Line Graph Neural Network</div> </div> .. raw:: html <div class="sphx-glr-thumbcontainer" tooltip="Authors: Hao Zhang, Mufei Li, Minjie Wang Zheng Zhang"> .. only:: html .. image:: /tutorials/models/1_gnn/images/thumb/sphx_glr_9_gat_thumb.png :alt: :ref:`sphx_glr_tutorials_models_1_gnn_9_gat.py` .. raw:: html <div class="sphx-glr-thumbnail-title">Understand Graph Attention Network</div> </div> .. thumbnail-parent-div-close .. raw:: html </div> .. toctree:: :hidden: /tutorials/models/1_gnn/1_gcn /tutorials/models/1_gnn/4_rgcn /tutorials/models/1_gnn/6_line_graph /tutorials/models/1_gnn/9_gat