.. _sphx_glr_tutorials_models_1_gnn:

.. _tutorials1-index:

Graph neural networks and its variants
--------------------------------------------

* **Graph convolutional network (GCN)** `[research paper] <https://arxiv.org/abs/1609.02907>`__ `[tutorial]
  <1_gnn/1_gcn.html>`__ `[Pytorch code]
  <https://github.com/dmlc/dgl/blob/master/examples/pytorch/gcn>`__
  `[MXNet code]
  <https://github.com/dmlc/dgl/tree/master/examples/mxnet/gcn>`__:

* **Graph attention network (GAT)** `[research paper] <https://arxiv.org/abs/1710.10903>`__ `[tutorial]
  <1_gnn/9_gat.html>`__ `[Pytorch code]
  <https://github.com/dmlc/dgl/blob/master/examples/pytorch/gat>`__
  `[MXNet code]
  <https://github.com/dmlc/dgl/tree/master/examples/mxnet/gat>`__:
  GAT extends the GCN functionality by deploying multi-head attention
  among neighborhood of a node. This greatly enhances the capacity and
  expressiveness of the model.

* **Relational-GCN** `[research paper] <https://arxiv.org/abs/1703.06103>`__ `[tutorial]
  <1_gnn/4_rgcn.html>`__ `[Pytorch code]
  <https://github.com/dmlc/dgl/tree/master/examples/pytorch/rgcn>`__
  `[MXNet code]
  <https://github.com/dmlc/dgl/tree/master/examples/mxnet/rgcn>`__:
  Relational-GCN allows multiple edges among two entities of a
  graph. Edges with distinct relationships are encoded differently. 

* **Line graph neural network (LGNN)** `[research paper] <https://openreview.net/pdf?id=H1g0Z3A9Fm>`__ `[tutorial]
  <1_gnn/6_line_graph.html>`__ `[Pytorch code]
  <https://github.com/dmlc/dgl/tree/master/examples/pytorch/line_graph>`__:
  This network focuses on community detection by inspecting graph structures. It
  uses representations of both the original graph and its line-graph
  companion. In addition to demonstrating how an algorithm can harness multiple
  graphs, this implementation shows how you can judiciously mix simple tensor
  operations and sparse-matrix tensor operations, along with message-passing with
  DGL.



.. raw:: html

    <div class="sphx-glr-thumbnails">

.. thumbnail-parent-div-open

.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Author: Qi Huang, Minjie Wang , Yu Gai, Quan Gan, Zheng Zhang">

.. only:: html

  .. image:: /tutorials/models/1_gnn/images/thumb/sphx_glr_1_gcn_thumb.png
    :alt:

  :ref:`sphx_glr_tutorials_models_1_gnn_1_gcn.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Graph Convolutional Network</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Author: Lingfan Yu, Mufei Li, Zheng Zhang">

.. only:: html

  .. image:: /tutorials/models/1_gnn/images/thumb/sphx_glr_4_rgcn_thumb.png
    :alt:

  :ref:`sphx_glr_tutorials_models_1_gnn_4_rgcn.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Relational Graph Convolutional Network</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Author: Qi Huang, Yu Gai, Minjie Wang, Zheng Zhang">

.. only:: html

  .. image:: /tutorials/models/1_gnn/images/thumb/sphx_glr_6_line_graph_thumb.png
    :alt:

  :ref:`sphx_glr_tutorials_models_1_gnn_6_line_graph.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Line Graph Neural Network</div>
    </div>


.. raw:: html

    <div class="sphx-glr-thumbcontainer" tooltip="Authors: Hao Zhang, Mufei Li, Minjie Wang  Zheng Zhang">

.. only:: html

  .. image:: /tutorials/models/1_gnn/images/thumb/sphx_glr_9_gat_thumb.png
    :alt:

  :ref:`sphx_glr_tutorials_models_1_gnn_9_gat.py`

.. raw:: html

      <div class="sphx-glr-thumbnail-title">Understand Graph Attention Network</div>
    </div>


.. thumbnail-parent-div-close

.. raw:: html

    </div>


.. toctree::
   :hidden:

   /tutorials/models/1_gnn/1_gcn
   /tutorials/models/1_gnn/4_rgcn
   /tutorials/models/1_gnn/6_line_graph
   /tutorials/models/1_gnn/9_gat