MNISTSuperPixelDataset
- class dgl.data.MNISTSuperPixelDataset(raw_dir=None, split='train', use_feature=False, force_reload=False, verbose=False, transform=None)[source]
Bases:
SuperPixelDataset
MNIST superpixel dataset for the graph classification task.
DGL dataset of MNIST and CIFAR10 in the benchmark-gnn which contains graphs converted fromt the original MINST and CIFAR10 images.
Reference http://arxiv.org/abs/2003.00982
Statistics:
Train examples: 60,000
Test examples: 10,000
Size of dataset images: 28
- Parameters:
raw_dir (str) – Directory to store all the downloaded raw datasets. Default: “~/.dgl/”.
split (str) – Should be chosen from [“train”, “test”] Default: “train”.
use_feature (bool) –
True: Adj matrix defined from super-pixel locations + features
False: Adj matrix defined from super-pixel locations (only)
Default: False.
force_reload (bool) – Whether to reload the dataset. Default: False.
verbose (bool) – Whether to print out progress information. Default: False.
transform (callable, optional) – A transform that takes in a
DGLGraph
object and returns a transformed version. TheDGLGraph
object will be transformed before every access.
Examples
>>> from dgl.data import MNISTSuperPixelDataset
>>> # MNIST dataset >>> train_dataset = MNISTSuperPixelDataset(split="train") >>> len(train_dataset) 60000 >>> graph, label = train_dataset[0] >>> graph Graph(num_nodes=71, num_edges=568, ndata_schemes={'feat': Scheme(shape=(3,), dtype=torch.float32)} edata_schemes={'feat': Scheme(shape=(1,), dtype=torch.float32)})
>>> # support tensor to be index when transform is None >>> # see details in __getitem__ function >>> import torch >>> idx = torch.tensor([0, 1, 2]) >>> train_dataset_subset = train_dataset[idx] >>> train_dataset_subset[0] Graph(num_nodes=71, num_edges=568, ndata_schemes={'feat': Scheme(shape=(3,), dtype=torch.float32)} edata_schemes={'feat': Scheme(shape=(1,), dtype=torch.float32)})
- __getitem__(idx)
Get the idx-th sample.
- Parameters:
idx (int or tensor) – The sample index. 1-D tensor as idx is allowed when transform is None.
- Returns:
(
dgl.DGLGraph
, Tensor) – Graph with node feature stored infeat
field and its label.or
dgl.data.utils.Subset
– Subset of the dataset at specified indices
- __len__()
The number of examples in the dataset.