.. _guide-graph-gpu: 1.6 Using DGLGraph on a GPU --------------------------- :ref:`(中文版)` One can create a :class:`~dgl.DGLGraph` on a GPU by passing two GPU tensors during construction. Another approach is to use the :func:`~dgl.DGLGraph.to` API to copy a :class:`~dgl.DGLGraph` to a GPU, which copies the graph structure as well as the feature data to the given device. .. code:: >>> import dgl >>> import torch as th >>> u, v = th.tensor([0, 1, 2]), th.tensor([2, 3, 4]) >>> g = dgl.graph((u, v)) >>> g.ndata['x'] = th.randn(5, 3) # original feature is on CPU >>> g.device device(type='cpu') >>> cuda_g = g.to('cuda:0') # accepts any device objects from backend framework >>> cuda_g.device device(type='cuda', index=0) >>> cuda_g.ndata['x'].device # feature data is copied to GPU too device(type='cuda', index=0) >>> # A graph constructed from GPU tensors is also on GPU >>> u, v = u.to('cuda:0'), v.to('cuda:0') >>> g = dgl.graph((u, v)) >>> g.device device(type='cuda', index=0) Any operations involving a GPU graph are performed on a GPU. Thus, they require all tensor arguments to be placed on GPU already and the results (graph or tensor) will be on GPU too. Furthermore, a GPU graph only accepts feature data on a GPU. .. code:: >>> cuda_g.in_degrees() tensor([0, 0, 1, 1, 1], device='cuda:0') >>> cuda_g.in_edges([2, 3, 4]) # ok for non-tensor type arguments (tensor([0, 1, 2], device='cuda:0'), tensor([2, 3, 4], device='cuda:0')) >>> cuda_g.in_edges(th.tensor([2, 3, 4]).to('cuda:0')) # tensor type must be on GPU (tensor([0, 1, 2], device='cuda:0'), tensor([2, 3, 4], device='cuda:0')) >>> cuda_g.ndata['h'] = th.randn(5, 4) # ERROR! feature must be on GPU too! DGLError: Cannot assign node feature "h" on device cpu to a graph on device cuda:0. Call DGLGraph.to() to copy the graph to the same device.