.. _api-dataloading: dgl.dataloading ================================= .. currentmodule:: dgl.dataloading The ``dgl.dataloading`` package provides two primitives to compose a data pipeline for loading from graph data. ``Sampler`` represents algorithms to generate subgraph samples from the original graph, and ``DataLoader`` represents the iterable over these samples. DGL provides a number of built-in samplers that subclass :class:`~dgl.dataloading.Sampler`. Creating new samplers follow the same paradigm. Read our user guide chapter :ref:`guide-minibatch` for more examples and explanations. The entire package only works for PyTorch backend. DataLoaders ----------- .. autosummary:: :toctree: ../../generated/ :nosignatures: :template: classtemplate.rst DataLoader GraphDataLoader .. _api-dataloading-neighbor-sampling: Samplers -------- .. autosummary:: :toctree: ../../generated/ :nosignatures: :template: classtemplate.rst Sampler NeighborSampler LaborSampler MultiLayerFullNeighborSampler ClusterGCNSampler ShaDowKHopSampler SAINTSampler Sampler Transformations ----------------------- .. autosummary:: :toctree: ../../generated/ as_edge_prediction_sampler BlockSampler .. _api-dataloading-negative-sampling: Negative Samplers for Link Prediction ------------------------------------- .. currentmodule:: dgl.dataloading.negative_sampler .. autosummary:: :toctree: ../../generated/ :nosignatures: :template: classtemplate.rst Uniform PerSourceUniform GlobalUniform Utility Class and Functions for Feature Prefetching --------------------------------------------------- .. currentmodule:: dgl.dataloading.base .. autosummary:: :toctree: ../../generated/ :nosignatures: :template: classtemplate.rst set_node_lazy_features set_edge_lazy_features set_src_lazy_features set_dst_lazy_features LazyFeature