"""Segment aggregation operators implemented using DGL graph."""
from .. import backend as F
from ..base import DGLError
__all__ = ["segment_reduce", "segment_softmax", "segment_mm"]
[docs]
def segment_reduce(seglen, value, reducer="sum"):
    """Segment reduction operator.
    It aggregates the value tensor along the first dimension by segments.
    The first argument ``seglen`` stores the length of each segment. Its
    summation must be equal to the first dimension of the ``value`` tensor.
    Zero-length segments are allowed.
    Parameters
    ----------
    seglen : Tensor
        Segment lengths.
    value : Tensor
        Value to aggregate.
    reducer : str, optional
        Aggregation method. Can be 'sum', 'max', 'min', 'mean'.
    Returns
    -------
    Tensor
        Aggregated tensor of shape ``(len(seglen), value.shape[1:])``.
    Examples
    --------
    >>> import dgl
    >>> import torch as th
    >>> val = th.ones(10, 3)
    >>> seg = th.tensor([1, 0, 5, 4])  # 4 segments
    >>> dgl.segment_reduce(seg, val)
    tensor([[1., 1., 1.],
            [0., 0., 0.],
            [5., 5., 5.],
            [4., 4., 4.]])
    """
    offsets = F.cumsum(
        F.cat([F.zeros((1,), F.dtype(seglen), F.context(seglen)), seglen], 0), 0
    )
    if reducer == "mean":
        rst = F.segment_reduce("sum", value, offsets)
        rst_shape = F.shape(rst)
        z = F.astype(F.clamp(seglen, 1, len(value)), F.dtype(rst))
        z_shape = (rst_shape[0],) + (1,) * (len(rst_shape) - 1)
        return rst / F.reshape(z, z_shape)
    elif reducer in ["min", "sum", "max"]:
        rst = F.segment_reduce(reducer, value, offsets)
        if reducer in ["min", "max"]:
            rst = F.replace_inf_with_zero(rst)
        return rst
    else:
        raise DGLError("reducer {} not recognized.".format(reducer)) 
def segment_softmax(seglen, value):
    """Performa softmax on each segment.
    The first argument ``seglen`` stores the length of each segment. Its
    summation must be equal to the first dimension of the ``value`` tensor.
    Zero-length segments are allowed.
    Parameters
    ----------
    seglen : Tensor
        Segment lengths.
    value : Tensor
        Value to aggregate.
    Returns
    -------
    Tensor
        Result tensor of the same shape as the ``value`` tensor.
    Examples
    --------
    >>> import dgl
    >>> import torch as th
    >>> val = th.ones(10, 3)
    >>> seg = th.tensor([1, 0, 5, 4])  # 4 segments
    >>> dgl.segment_softmax(seg, val)
    tensor([[1.0000, 1.0000, 1.0000],
            [0.2000, 0.2000, 0.2000],
            [0.2000, 0.2000, 0.2000],
            [0.2000, 0.2000, 0.2000],
            [0.2000, 0.2000, 0.2000],
            [0.2000, 0.2000, 0.2000],
            [0.2500, 0.2500, 0.2500],
            [0.2500, 0.2500, 0.2500],
            [0.2500, 0.2500, 0.2500],
            [0.2500, 0.2500, 0.2500]])
    """
    value_max = segment_reduce(seglen, value, reducer="max")
    value = F.exp(value - F.repeat(value_max, seglen, dim=0))
    value_sum = segment_reduce(seglen, value, reducer="sum")
    return value / F.repeat(value_sum, seglen, dim=0)
[docs]
def segment_mm(a, b, seglen_a):
    r"""Performs matrix multiplication according to segments.
    Suppose ``seglen_a == [10, 5, 0, 3]``, the operator will perform
    four matrix multiplications::
        a[0:10] @ b[0], a[10:15] @ b[1],
        a[15:15] @ b[2], a[15:18] @ b[3]
    Parameters
    ----------
    a : Tensor
        The left operand, 2-D tensor of shape ``(N, D1)``
    b : Tensor
        The right operand, 3-D tensor of shape ``(R, D1, D2)``
    seglen_a : Tensor
        An integer tensor of shape ``(R,)``. Each element is the length of segments
        of input ``a``. The summation of all elements must be equal to ``N``.
    Returns
    -------
    Tensor
        The output dense matrix of shape ``(N, D2)``
    """
    return F.segment_mm(a, b, seglen_a)