import os
import numpy as np
import scipy.sparse as sp
from .. import backend as F
from ..convert import graph
from .dgl_dataset import DGLBuiltinDataset
from .utils import _get_dgl_url, load_graphs, load_info, save_graphs, save_info
[docs]
class FakeNewsDataset(DGLBuiltinDataset):
    r"""Fake News Graph Classification dataset.
    The dataset is composed of two sets of tree-structured fake/real
    news propagation graphs extracted from Twitter. Different from
    most of the benchmark datasets for the graph classification task,
    the graphs in this dataset are directed tree-structured graphs where
    the root node represents the news, the leaf nodes are Twitter users
    who retweeted the root news. Besides, the node features are encoded
    user historical tweets using different pretrained language models:
    - bert: the 768-dimensional node feature composed of Twitter user historical tweets encoded by the bert-as-service
    - content: the 310-dimensional node feature composed of a 300-dimensional βspacyβ vector plus a 10-dimensional βprofileβ vector
    - profile: the 10-dimensional node feature composed of ten Twitter user profile attributes.
    - spacy: the 300-dimensional node feature composed of Twitter user historical tweets encoded by the spaCy word2vec encoder.
    Reference: <https://github.com/safe-graph/GNN-FakeNews>
    Note: this dataset is for academic use only, and commercial use is prohibited.
    Statistics:
        Politifact:
        - Graphs: 314
        - Nodes: 41,054
        - Edges: 40,740
        - Classes:
            - Fake: 157
            - Real: 157
        - Node feature size:
            - bert: 768
            - content: 310
            - profile: 10
            - spacy: 300
        Gossipcop:
        - Graphs: 5,464
        - Nodes: 314,262
        - Edges: 308,798
        - Classes:
            - Fake: 2,732
            - Real: 2,732
        - Node feature size:
            - bert: 768
            - content: 310
            - profile: 10
            - spacy: 300
    Parameters
    ----------
    name : str
        Name of the dataset (gossipcop, or politifact)
    feature_name : str
        Name of the feature (bert, content, profile, or spacy)
    raw_dir : str
        Specifying the directory that will store the
        downloaded data or the directory that
        already stores the input data.
        Default: ~/.dgl/
    transform : callable, optional
        A transform that takes in a :class:`~dgl.DGLGraph` object and returns
        a transformed version. The :class:`~dgl.DGLGraph` object will be
        transformed before every access.
    Attributes
    ----------
    name : str
        Name of the dataset (gossipcop, or politifact)
    num_classes : int
        Number of label classes
    num_graphs : int
        Number of graphs
    graphs : list
        A list of DGLGraph objects
    labels : Tensor
        Graph labels
    feature_name : str
        Name of the feature (bert, content, profile, or spacy)
    feature : Tensor
        Node features
    train_mask : Tensor
        Mask of training set
    val_mask : Tensor
        Mask of validation set
    test_mask : Tensor
        Mask of testing set
    Examples
    --------
    >>> dataset = FakeNewsDataset('gossipcop', 'bert')
    >>> graph, label = dataset[0]
    >>> num_classes = dataset.num_classes
    >>> feat = dataset.feature
    >>> labels = dataset.labels
    """
    file_urls = {
        "gossipcop": "dataset/FakeNewsGOS.zip",
        "politifact": "dataset/FakeNewsPOL.zip",
    }
    def __init__(self, name, feature_name, raw_dir=None, transform=None):
        assert name in [
            "gossipcop",
            "politifact",
        ], "Only supports 'gossipcop' or 'politifact'."
        url = _get_dgl_url(self.file_urls[name])
        assert feature_name in [
            "bert",
            "content",
            "profile",
            "spacy",
        ], "Only supports 'bert', 'content', 'profile', or 'spacy'"
        self.feature_name = feature_name
        super(FakeNewsDataset, self).__init__(
            name=name, url=url, raw_dir=raw_dir, transform=transform
        )
    def process(self):
        """process raw data to graph, labels and masks"""
        self.labels = F.tensor(
            np.load(os.path.join(self.raw_path, "graph_labels.npy"))
        )
        num_graphs = self.labels.shape[0]
        node_graph_id = np.load(
            os.path.join(self.raw_path, "node_graph_id.npy")
        )
        edges = np.genfromtxt(
            os.path.join(self.raw_path, "A.txt"), delimiter=",", dtype=int
        )
        src = edges[:, 0]
        dst = edges[:, 1]
        g = graph((src, dst))
        node_idx_list = []
        for idx in range(np.max(node_graph_id) + 1):
            node_idx = np.where(node_graph_id == idx)
            node_idx_list.append(node_idx[0])
        self.graphs = [g.subgraph(node_idx) for node_idx in node_idx_list]
        train_idx = np.load(os.path.join(self.raw_path, "train_idx.npy"))
        val_idx = np.load(os.path.join(self.raw_path, "val_idx.npy"))
        test_idx = np.load(os.path.join(self.raw_path, "test_idx.npy"))
        train_mask = np.zeros(num_graphs, dtype=np.bool_)
        val_mask = np.zeros(num_graphs, dtype=np.bool_)
        test_mask = np.zeros(num_graphs, dtype=np.bool_)
        train_mask[train_idx] = True
        val_mask[val_idx] = True
        test_mask[test_idx] = True
        self.train_mask = F.tensor(train_mask)
        self.val_mask = F.tensor(val_mask)
        self.test_mask = F.tensor(test_mask)
        feature_file = "new_" + self.feature_name + "_feature.npz"
        self.feature = F.tensor(
            sp.load_npz(os.path.join(self.raw_path, feature_file)).todense()
        )
    def save(self):
        """save the graph list and the labels"""
        save_graphs(str(self.graph_path), self.graphs)
        save_info(
            self.info_path,
            {
                "label": self.labels,
                "feature": self.feature,
                "train_mask": self.train_mask,
                "val_mask": self.val_mask,
                "test_mask": self.test_mask,
            },
        )
    @property
    def graph_path(self):
        return os.path.join(self.save_path, self.name + "_dgl_graph.bin")
    @property
    def info_path(self):
        return os.path.join(self.save_path, self.name + "_dgl_graph.pkl")
    def has_cache(self):
        """check whether there are processed data in `self.save_path`"""
        return os.path.exists(self.graph_path) and os.path.exists(
            self.info_path
        )
    def load(self):
        """load processed data from directory `self.save_path`"""
        graphs, _ = load_graphs(str(self.graph_path))
        info = load_info(str(self.info_path))
        self.graphs = graphs
        self.labels = info["label"]
        self.feature = info["feature"]
        self.train_mask = info["train_mask"]
        self.val_mask = info["val_mask"]
        self.test_mask = info["test_mask"]
    @property
    def num_classes(self):
        """Number of classes for each graph, i.e. number of prediction tasks."""
        return 2
    @property
    def num_graphs(self):
        """Number of graphs."""
        return self.labels.shape[0]
[docs]
    def __getitem__(self, i):
        r"""Get graph and label by index
        Parameters
        ----------
        i : int
            Item index
        Returns
        -------
        (:class:`dgl.DGLGraph`, Tensor)
        """
        if self._transform is None:
            g = self.graphs[i]
        else:
            g = self._transform(self.graphs[i])
        return g, self.labels[i] 
[docs]
    def __len__(self):
        r"""Number of graphs in the dataset.
        Return
        -------
        int
        """
        return len(self.graphs)